
© 2011 Carnegie Mellon University

Fuzz Testing for Dummies
ICSJWG May 2011
Art Manion
Michael Orlando

2

Art Manion
Michael Orlando
CERT Vulnerability Analysis team

•  Analysis and research
•  Coordination and disclosure

— Vendors, researchers, other CSIRTs (including ICS-CERT)
•  Discovery

— Tools and methods to find vulnerabilities

Introduction

3

Outline
Fuzz testing

•  Tools
•  ICS application

Exploit mitigation
•  Microsoft Windows

— EMET
— ISV guidance

•  UNIX-like platforms

4

Fuzz Testing
Providing unexpected, invalid, or random data to an
application with the intention of triggering a bug

•  Unexpected behavior
•  Crashes

— Buffer overflows
— Integer overflows
— Memory corruption
— Format string bugs

5

Fuzzing Methods
Smart (generational) fuzzing

•  Requires in-depth knowledge of target and specialized
tools
— Dranzer ActiveX fuzzer

•  Results
— Less crash analysis required
— Less duplication of findings

Dumb (mutational) fuzzing
•  Requires no knowledge of target, existing tools
•  Results

— More crash analysis required
— More duplication of findings

6

Dumb(est) Fuzzing
Charlie Miller’s “five lines of python” dumb fuzzer

•  Found vulnerabilities in PDF readers and Office
presentation software

numwrites=random.randrange(math.ceil((float(len
(buf)) / FuzzFactor)))+1for j in range
(numwrites):rbyte = random.randrange(256)rn =
random.randrange(len(buf))buf[rn] = "%c"%(rbyte);  
 
<http://securityevaluators.com/files/slides/cmiller_CSW_2010.ppt>

7

Fuzzing Framework Requirements
Features required for an effective fuzzing framework

•  Test case generation
•  Application execution
•  Anomaly detection
•  Crash reporting

8

CERT Fuzzing Tools
Dranzer: Smart ActiveX fuzzer
File format fuzzers

•  BFF: Basic Fuzzing Framework
•  FOE: Failure Observation Engine
•  Most effective against uncompressed binary formats

9

BFF
Debian Linux virtual machine (VMware)

•  Uses zzuf, valgrind
•  OS configuration optimized for fuzzing
•  Software watchdog

Fuzzing scripts
•  Test case generation
•  Process killer
•  Crash verification
•  Crash de-duplication
•  Crash minimization

10

BFF (2)
Rangefinder

•  Focus on areas (bytes) in the test case that are resulting
in crashes

Minimizer
•  Find the least changed test case (bytes) that causes the

same crash
•  Inspired by fuzzdiff
•  Many crashes caused by 1-3 byte changes

11

BFF in Action

12

FOE
Python on Windows XP

•  Built from scratch
•  Configurable mutators

— bytemut, bitmut, wave, swap, copy
•  Hook or full debug modes
•  Output bucketing

— Severity determination using Windows debugging extension
called !exploitable (“bang exploitable”)

o  EXPLOITABLE, PROBABLY_EXPLOITABLE,
PROBABLY_NOT_EXPLOITABLE, UNKNOWN

13

FOE in Action

14

Fuzzing Office Suites
A Security Comparison: Microsoft Office vs Oracle OpenOffice

15

Fuzzing ICS File Formats
Rockwell EDS Hardware Installation Tool (.eds)

•  Previous EDS vulnerability
<http://rockwellautomation.custhelp.com/app/answers/detail/a_id/67272>

Ecava IntegraXor Editor (.igx)
Automated Solutions OPC Server (.tbd)

16

Test Setup
Downloadable/demo software
VMware
FOE uses !exploitable to determine severity
One crash does not equal one vulnerability
250K+ iterations
Seed files

•  Can affect code coverage
•  Created one seed file each for .igx and .tbd
•  Found ~25 .eds seed files

17

Results
Rockwell EDS Hardware Installation Tool (2 crashes)

•  2 EXPLOITABLE
Ecava IntegraXor Editor (127 crashes)

•  26 EXPLOITABLE
•  22 PROBABLY_EXPLOITABLE
•  3 PROBABALY_NOT_EXPLOITABLE
•  76 UNKNOWN

Automated Solutions OPC Server (43 crashes)
•  11 EXPLOITABLE
•  15 PROBABLY_EXPLOITABLE
•  11 PROBABLY_NOT_EXPLOITABLE
•  6 UNKNOWN

18

Results (2)

0

20

40

60

80

100

120

140

.eds .igx .tbd

UNKNOWN

PROBABLY_NOT_EXPLOITABLE

PROBABLY_EXPLOITABLE

EXPLOITABLE

19

Vulnerability Mitigation
What are realistic attack vectors using ICS configuration
files?

•  Dangerous to load an arbitrary configuration file even in the
absence of any vulnerabilities
—  ”Configuration files that are written by one user and read by

another.”
<http://msdn.microsoft.com/en-us/library/cc162782.aspx#Fuzzing_topic5>

Previous Rockwell Automation recommendations
•  Obtain product EDS files from trusted sources (e.g. product

vendor)
•  Restrict physical access to the computer
•  Establish policies and procedures such that only authorized

individuals have administrative rights on the computer

20

Fuzzing Conclusions
Everything is vulnerable

•  Dumb fuzzing has found vulnerabilities in everything
we’ve targeted

•  We (and others) have been focusing on common,
complicated binary formats
— PDF
— Office document formats
— Flash

0-day isn’t rare
•  Assume software you develop and run has vulnerabilities

— You just don’t know about them yet

21

0-Day isn’t Rare

22

Recommendations

1.  Fuzz
2.  Exploit mitigation

23

Fuzz
Make fuzz testing part of SDLC

•  No SDLC? Make dumb fuzzing the first component of
your new SDLC

•  CERT fuzzing tools
— Dranzer and BFF free for download
— FOE available by request

•  Many other free and commercial tools

Somebody else is fuzzing (or is going to fuzz) your
software

<http://aluigi.org/adv.htm>

24

Exploit Mitigation: Microsoft Windows
Compile time

•  Stack cookies (/GS)
•  Structured Exception Handler registration (/SAFESEH)

Runtime
•  Data Execution Prevention (DEP)
•  Address Space Layout Randomization (ASLR)

— Build with /DYNAMICBASE
•  Heap metadata protection (HeapEnableTerminationOnCorruption)

•  Structured Exception Handler Overwrite Protection
(SEHOP)

Enhanced Mitigation Experience Toolkit (EMET)
Windows ISV Software Security Defenses

25

Exploit Mitigation: UNIX-like Platforms
Compile time

•  Stack protection (StackGuard/SSP/ProPolice)
•  Buffer length checking (-D_FORTIFY_SOURCE=2 -O2)

Runtime
•  No-execute/execution disabled (NX/XD)

— Hardware (PAE) or emulated (segment limits)
•  Address randomization

— exec(), brk(), mmap(), Virtual Dynamically-linked Shared
Object (VDSO), Position Independent Executable (PIE)"

•  Global Offset Table (GOT) overwrite protection
•  GNU libc heap memory manager protections
•  Also Pax, W^X

26

Lessons Learned
Dumb fuzzing shouldn’t be so effective

•  Software is full of bugs, and some of those bugs are
vulnerabilities

•  Include fuzz testing as part of SDLC
— Improve software security
— Free tools from CERT and others
— If you don’t, someone else will

•  Fuzzing can lead to improvements in software security

Assume everything you create and use has
vulnerabilities

•  Move focus from 0-day to more proactive security

27

Lessons Learned (2)
Exploit mitigation

•  OS vendors: Implement and document exploit mitigation
features

•  Application vendors: Take advantage of available
platform exploit mitigation features

28

More Information
Announcing the CERT Basic Fuzzing Framework 2.0
<http://www.cert.org/blogs/certcc/2011/02/cert_basic_fuzzing_framework_b.html>

A Security Comparison: Microsoft Office vs. Oracle OpenOffice
<http://www.cert.org/blogs/certcc/2011/04/office_shootout_microsoft_offi.html>

Automated Penetration Testing with White-Box Fuzzing
<http://msdn.microsoft.com/en-us/library/cc162782.aspx>

Windows ISV Software Security Defenses
<http://msdn.microsoft.com/en-us/library/bb430720.aspx>

The Enhanced Mitigation Experience Toolkit
<http://support.microsoft.com/kb/2458544>

Security/Features – Ubuntu Linux
<https://wiki.ubuntu.com/Security/Features>

Fuzz By Number
<http://cansecwest.com/csw08/csw08-miller.pdf>

Babysitting an Army of Monkeys
<http://securityevaluators.com/files/slides/cmiller_CSW_2010.ppt>

29

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the
trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests
for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit others to do so, for government purposes pursuant to the copyright license under the clause at
252.227-7013.

